Optimizing the use and outcomes of national RIs through international participation

William H. McDowell, ICRI 2018 University of New Hampshire, USA

Aquatic ecosystems as a case study in sensor networks as research infrastructure

YSI EXO – turbidity, pH, conductance, Dissolved organic matter

SUNA Nitrate analyzer

Why bother?

Many aquatic issues are continental to global scale in scope... e.g. rivers systems drive dead zones due to human footprint (Diaz and Rosenberg 2008. Science 321:926-929)

What will we learn?

- How aquatic ecosystems function
 (fundamental biogeochemical fluxes and biotic functions)
- Global rules for ecosystem function that can lead to better management and protection globally
- Regional or biome-specific variation from national networks

When are streams green? Establishing phenology of stream metabolism

(Bernhardt et al. 2018, Limnology and Oceanography)

Light, disturbance, nutrients all potentially interact to affect primary productivity; challenge is to quantify metabolism and understand drivers at the continental scale

Stream metabolism in a warming world

(Song et al. 2018 Nature Geosciences)

SCALER Macrosystems sites

With increasing temperature, *respiration increases faster than photosynthesis* at the warmest sites; CO₂ release dominates uptake

Lessons from a prototype network

(Koenig et al. 2017 WRR)

Terrestrial-Aquatic Sensor Network

Four years of 15-minute data by season show a surprising lack of regional coherence in response of FDOM (a proxy for dissolved organic carbon, DOC) to river runoff

What will we learn? Surprise me!

Specific data challenges

- Use it or lose it...using data provides new insights and new level of QA/QC, and keeps data structure up to current standards for interoperability
- Infrastructures for data preservation and data exploitation must be brought together as noted yesterday
- Data sources should open by default

Values/challenges/issues of internationalization

- Scientific value of this RI is based on a wide range of sites that cover global conditions and engage diverse stakeholders
- Very different model from a single national infrastructure (collider) that others can visit
- Analogous to LIGO network looking inward at Earth not outward at gravitational waves in the universe

Internationalization (Continued)

- Every user of data should be a generator of data (this may require funding to less developed nations)
- Each user thus has a stake in the success of the joint enterprise

Questions?

